Harborside at Hidden Harbour Pompano Beach, Florida

prepared for:
ANP IV - Hidden Harbour, LC
valet analysis

ENGINEERING, INC.

Mr. Andrew Stumer
J anuary 16, 2020
AMP IV Hidden Harbour, ШС
2890 NE 187th Street
Aventura, FL 33180

Re: Valet Analysis for Harbourside at Hidden Harbour - Pompano Beach

DearAndy:
Pursuant to the City of Pompano Beach's request, Traf Tech Engineering, Inc. has prepared a valet analysis specific to the east residential building located within the proposed Harbourside at Hidden Harbour mixed-use project. The subject project is located on the east side of North Federal Highway between NE 16 ${ }^{\text {th }}$ Street on the north and approximately 300 feet north of NE $14^{\text {th }}$ Street, as illustrated in Figure 1. This report estimates the number of valet runners required in order to prevent valet vehicles from spilling onto (backing up) NE 16 ${ }^{\text {th }}$ Street. The following is a summary of our findings.

Tip Generation

A trip generation analysis was performed for the east residential building using the trip generation rates published in the Institute of Transportation Engineer's (IIE) report Trip Generation Manual (10 Edition). The trip generation analysis was undertaken for the PM peak hour of the adjacent street which is the most critical peak hour, especially in the inbound direction. According to TE's Trip Generation Manual (10th Edition), trip generation rate during the PM peak is:

MULTIFAMILY HOUSING (Mid-Rise) (IIE Land Use 221)

Peak Hour of the Adjacent Street
$T=0.44(X)$ (61% inbound and 39% outbound)
Where $T=$ number of peak hour trips, $X=$ number of units

Harbourside at Hidden Harbour (East Building)

Trip Generation
Using the above-listed equations from the ITE document, a trip generation a na lysis was underta ken for the east building. The proposed valet drop-off/pickup area is for the exclusive use of the east residential building. The results of the trip generation effort are documented in Table 1 on Page 3.

ENGINEERING, INC.

TABLE 1 Thip Generation Analysis Harbourside at Hidden Harbour				
Land Use	East Bldg Size	In	Out	Total
	In Peak Hour			
	up to 170 units	46	29	75

Source: ITE Trip Generation Manual ($10^{\text {th }}$ Edition)
Valet Operation
The east residential building of Harbourside at Hidden Harbour will provide valet parking off of NE $16^{\text {th }}$ Street. A dedicated on-site valet drop-off/pick-up drive aisle is proposed as depicted in the site plan contained in Attachment A. The width of the valet drive aisle is 18 feet in order to allow vehicles to pass a stopped vehicle in order to expedite the valet operation. Additionally, at least five (5) vehicles can be accommodated within the valet drive aisle between the valet station and the south right-of-way line of NE $16^{\text {th }}$ Street (112 feet at 22 feet per vehicle). Between the valet station and the south edge of pavement of NE 16th Street (approximately 128 feet at 21-22 feet per vehicle), up to six (6) passenger vehicles can be accommodated without encroaching into NE $16^{\text {th }}$ Street. The entrance to the valet parking garage is located approximately 900 feet from the valet station.

To determine the number of valet runners associated with the valet operation, a queuing analysis was undertaken. The length of queue anticipated at the drop-off/pick-up area was established using information contained in TE's Transportation and Land Development, Chapter 8 - Drive-In Facilities¹. For this a nalysis, the following input variables were used:
o Service Rate: The distance between the valet station and the valet parking garage located on the west side of NE $23^{\text {rd }}$ Avenue is approximately 900. An additional 500 feet (for a total of 1,400 feet) of travel distance was added to account for driving inside the parking garage to the location of the future valet parking area (as of the date of this letter, the valet parking area has not been determined within the parking structure). As documented in Attachment B, the service rate for valet puposes is approximately eight (8) vehicles per hour per valet runner.

[^0]ENGINEERING, INC.
o Demand Rate: As indicated in Table 1, a maximum of 75 inbound/outbound vehic les will a mive/depart during the highest hour. For valet puposes, 50% (38 valet customers) were assumed to use the valet service during the peak hour of the east residential building (future users of the east building will have the option to self-park or use the valet service).

Using equation 8-9b and Table 8-11 of ITE's Transportation and Land Development, the maximum length of queue antic ipated at the valet station, at the 95% confidence level, is four (4) vehicles. However, the on-site valet station should provide dimension for at least five (5) vehicles and have up to 8 valet runners during peak times. Moreover, it is recommended that the future valet station of the east residential building be managed by a valet operator at all times. The results of the ITE queuing procedure is contained in Attachment B.

Please give me a call if you have any questions.
TRAF TECH ENGINEERING, ING.

Senior Transportation Engineer

ATIACHMENTA

Site Plan,
 Valet Drop-off/ Pick-up Location with Dimensions plus AutoTURN Analysis

ATIACHMENTB

Valet Analyses for Harborside at Hidden Harbour

Queuing Analysis based on ITE Procedures Harborside at Hidden Harbour

$\mathrm{q}=38 \mathrm{veh} / \mathrm{hr}$ (demand rate)
$\mathrm{Q}=8 \mathrm{veh} / \mathrm{hr}$ (service rate*)
$p=\frac{q}{N Q}=0.5938(N=8$ valet runner $)$

$$
Q_{M}=0.5938
$$

Using Acceptable Probability of 5\% (95\% Confidence Level)

$$
\begin{aligned}
& M=\left(\frac{\operatorname{Ln}(x>M)-\operatorname{Ln}\left(Q_{M}\right)}{\operatorname{Ln}(p)}\right)-1 \\
& M=\left(\frac{\operatorname{Ln}(0.05)-\operatorname{Ln}(0.5938)}{\operatorname{Ln}(5938)}\right)-1 \\
& M=\left(\frac{-2.9957-(-0.5212)}{-0.5212}\right)-1 \\
& M=4.7-1=3.7, \text { say } 4 \text { vehicles }
\end{aligned}
$$

- Ticket processing time $=\mathbf{6 0} \mathbf{~ s e c} .+$ vehicle travel time at $15 \mathrm{mph}(1,400 \mathrm{feet})=\mathbf{6 4} \mathbf{~ s e c}$. + parking time $=\mathbf{3 0} \mathbf{~ s e c} .+$ walking/running time at $5 \mathrm{ft} / \mathrm{sec}$ for 1,400 feet $=\mathbf{2 8 0} \mathbf{~ s e c}$.
+12 second delay at gate system $=12 \mathbf{~ s e c}$ for a total time of 446 sec , say 450 sec (8 veh per hour).
location, a 5% probability of back-up onto the adjacent street is judged to be acceptable. Demand on the system for design is expected to be 110 vehicles in a 45 -minute period. Average service time was expected to be 2.2 minutes. is the queue storage adequate?

Such problems can be quickly solved using Equation (8-9b) given in Table $8-10$ and repeated below for convenience.

$$
M=\left[\frac{\ln P(x>M)-\ln Q_{M}}{\ln p}\right]-1
$$

where:
$M=$ queue length which is exceeded p percent of the time
$N=$ rumber of service channels (drive-in positions)
$Q=$ service rate per channel (vehicles per hour)
$\rho=\frac{\text { demand rate }}{\text { service rate }}=\frac{q}{N Q}=$ utilization factor
$q=$ demand rate on the system (vehicles per hour)
$Q_{n}=$ tabled values of the relationship between queue length, number of channels, and utilization factor (see Table 8.11)

TABLE $8-11$
Table of Q_{M} Values

	$N=1$	2	3		4	6	8
0.0	0.0000	0.0000	0.0000	0.0000		10	
0.1	.1000	.0182	.0037	.0008	.0000	0.0000	0.0000
.2	.2000	.0666	.0247	.0096	.0015	.0002	.0000
.3	.3000	.1385	.0700	.0370	.0111	.0036	.0011
.4	.4000	.2286	.1411	.0907	.0400	.0185	.0088
.5	.5000	.3333	.2368	.1739	.0991	.0591	.0360
.6	.6000	.4501	.3548	.2870	.1965	.1395	.1013
.7	.7000	.5766	.4923	.4286	.3359	.2706	.2218
.8	.8000	.7111	.6472	.5964	.5178	.4576	.4093
.9	.9000	.8526	.8172	.7878	.7401	.7014	.6687
1.0	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

$\rho=\frac{q}{N O}=\frac{\text { arrival rate. tota }}{\text { (nomber of chameis) (senvice tate per oltannel) }}$
$N=$ nuttobr of chanmels (tervice positionsj

Solution

Step 1: $Q=\frac{60 \mathrm{~min} / \mathrm{hr}}{2.2 \mathrm{~min} / \mathrm{service}}=27.3$ services per hour
Step 2: $q=(110 \mathrm{veh} / 45 \mathrm{~min}) \times(60 \mathrm{~min} / \mathrm{hr})=146.7$ vehicles per hour
Step 3: $\rho=\frac{q}{N Q}=\frac{146.7}{(6)(27.3)}=0.8956$
Step 4: $Q_{M}=0.7303$ by interplation between 0.8 and 0.9 for $N=6$ from the table of $Q_{\text {if }}$ values (see Table 8-11).
Step 5: The acceptable probability of the queue, M, being longer than the storage, 18 spaces in this example, was stated to be $5 \% . P(x>M)=0.05$, and:

$$
\begin{aligned}
M & =\left[\frac{\ln 0.05-\ln 0.7303}{\ln 0.8956}\right]-1=\left[\frac{-2.996-(-0.314)}{-0.110}\right]-1 \\
& =24.38-1=23.38, \text { say } 23 \text { vehicles. }
\end{aligned}
$$

[^0]: ${ }^{1}$ By Vergil G. Stover and FrankJ. Koepke.

